Link prediction is a crucial problem in graph-structured data. Due to the recent success of graph neural networks (GNNs), a variety of GNN-based models were proposed to tackle the link prediction task. Specifically, GNNs leverage the message passing paradigm to obtain node representation, which relies on link connectivity. However, in a link prediction task, links in the training set are always present while ones in the testing set are not yet formed, resulting in a discrepancy of the connectivity pattern and bias of the learned representation. It leads to a problem of dataset shift which degrades the model performance. In this paper, we first identify the dataset shift problem in the link prediction task and provide theoretical analyses on how existing link prediction methods are vulnerable to it. We then propose FakeEdge, a model-agnostic technique, to address the problem by mitigating the graph topological gap between training and testing sets. Extensive experiments demonstrate the applicability and superiority of FakeEdge on multiple datasets across various domains.
translated by 谷歌翻译
逼真的触觉需要高保真的身体建模和忠实的驾驶才能使动态合成的外观与现实无法区分。在这项工作中,我们提出了一个端到端框架,该框架解决了建模和推动真实人的全身化身方面的两个核心挑战。一个挑战是驾驶头像,同时忠实地遵守细节和动态,而这些细节和动态无法被全球低维参数化(例如身体姿势)所捕捉。我们的方法支持驾驶穿着皱纹和运动的衣服化身,而真正的驾驶表演者展出了训练语料库。与现有的全局状态表示或非参数屏幕空间方法不同,我们介绍了Texel对准功能 - 一种本地化表示,可以利用基于骨架的参数模型的结构先验和同时观察到的稀疏图像信号。另一个挑战是建模临时连贯的衣服头像,通常需要精确的表面跟踪。为了避免这种情况,我们通过将体积原语的混合物扩展到清晰的物体,提出了一种新型的体积化头像表示。通过明确合并表达,我们的方法自然而然地概括了看不见的姿势。我们还介绍了局部视点条件,从而导致了依赖视图的外观的概括。拟议的体积表示不需要高质量的网格跟踪作为先决条件,并且与基于网格的对应物相比,具有显着的质量改进。在我们的实验中,我们仔细研究了我们的设计选择,并证明了方法的功效,超过了最新方法在挑战驾驶方案方面的最新方法。
translated by 谷歌翻译
单像人类的重新构成旨在通过将输入图像分解为反照率,形状和照明,以在新的照明条件下重新确定目标人。尽管可以实现合理的重新确定结果,但以前的方法均遭受反照率和照明之间的纠缠以及缺乏硬阴影的纠缠,这大大降低了现实主义。为了解决这两个问题,我们提出了一个几何学意识到的单像人类重心框架,该框架利用单位图几何重建来共同部署传统的图形渲染和神经渲染技术。对于脱光灯,我们探索了UNET架构的缺点,并提出了修改后的HRNET,从而在反照率和照明之间获得了更好的分解。为了获得重新,我们引入了一个基于射线跟踪的每个像素照明表示形式,该表示明确地对高频阴影进行了建模,并提出了一个基于学习的阴影修补模块,以恢复来自射线追踪的阴影图的逼真的逼真的阴影(包括硬铸造阴影)。我们的框架能够生成照片逼真的高频阴影,例如在挑战性的照明条件下铸造阴影。广泛的实验表明,我们提出的方法在合成图像和真实图像上都优于先前的方法。
translated by 谷歌翻译
Blind image quality assessment (BIQA) remains challenging due to the diversity of distortion and image content variation, which complicate the distortion patterns crossing different scales and aggravate the difficulty of the regression problem for BIQA. However, existing BIQA methods often fail to consider multi-scale distortion patterns and image content, and little research has been done on learning strategies to make the regression model produce better performance. In this paper, we propose a simple yet effective Progressive Multi-Task Image Quality Assessment (PMT-IQA) model, which contains a multi-scale feature extraction module (MS) and a progressive multi-task learning module (PMT), to help the model learn complex distortion patterns and better optimize the regression issue to align with the law of human learning process from easy to hard. To verify the effectiveness of the proposed PMT-IQA model, we conduct experiments on four widely used public datasets, and the experimental results indicate that the performance of PMT-IQA is superior to the comparison approaches, and both MS and PMT modules improve the model's performance.
translated by 谷歌翻译
It has been observed in practice that applying pruning-at-initialization methods to neural networks and training the sparsified networks can not only retain the testing performance of the original dense models, but also sometimes even slightly boost the generalization performance. Theoretical understanding for such experimental observations are yet to be developed. This work makes the first attempt to study how different pruning fractions affect the model's gradient descent dynamics and generalization. Specifically, this work considers a classification task for overparameterized two-layer neural networks, where the network is randomly pruned according to different rates at the initialization. It is shown that as long as the pruning fraction is below a certain threshold, gradient descent can drive the training loss toward zero and the network exhibits good generalization performance. More surprisingly, the generalization bound gets better as the pruning fraction gets larger. To complement this positive result, this work further shows a negative result: there exists a large pruning fraction such that while gradient descent is still able to drive the training loss toward zero (by memorizing noise), the generalization performance is no better than random guessing. This further suggests that pruning can change the feature learning process, which leads to the performance drop of the pruned neural network. Up to our knowledge, this is the \textbf{first} generalization result for pruned neural networks, suggesting that pruning can improve the neural network's generalization.
translated by 谷歌翻译
Time-series anomaly detection is an important task and has been widely applied in the industry. Since manual data annotation is expensive and inefficient, most applications adopt unsupervised anomaly detection methods, but the results are usually sub-optimal and unsatisfactory to end customers. Weak supervision is a promising paradigm for obtaining considerable labels in a low-cost way, which enables the customers to label data by writing heuristic rules rather than annotating each instance individually. However, in the time-series domain, it is hard for people to write reasonable labeling functions as the time-series data is numerically continuous and difficult to be understood. In this paper, we propose a Label-Efficient Interactive Time-Series Anomaly Detection (LEIAD) system, which enables a user to improve the results of unsupervised anomaly detection by performing only a small amount of interactions with the system. To achieve this goal, the system integrates weak supervision and active learning collaboratively while generating labeling functions automatically using only a few labeled data. All of these techniques are complementary and can promote each other in a reinforced manner. We conduct experiments on three time-series anomaly detection datasets, demonstrating that the proposed system is superior to existing solutions in both weak supervision and active learning areas. Also, the system has been tested in a real scenario in industry to show its practicality.
translated by 谷歌翻译
As an important variant of entity alignment (EA), multi-modal entity alignment (MMEA) aims to discover identical entities across different knowledge graphs (KGs) with multiple modalities like images. However, current MMEA algorithms all adopt KG-level modality fusion strategies but ignore modality differences among individual entities, hurting the robustness to potential noise involved in modalities (e.g., unidentifiable images and relations). In this paper we present MEAformer, a multi-modal entity alignment transformer approach for meta modality hybrid, to dynamically predict the mutual correlation coefficients among modalities for instance-level feature fusion. A modal-aware hard entity replay strategy is also proposed for addressing vague entity details. Extensive experimental results show that our model not only achieves SOTA performance on multiple training scenarios including supervised, unsupervised, iterative, and low resource, but also has limited parameters, optimistic speed, and good interpretability. Our code will be available soon.
translated by 谷歌翻译
The task of video prediction and generation is known to be notoriously difficult, with the research in this area largely limited to short-term predictions. Though plagued with noise and stochasticity, videos consist of features that are organised in a spatiotemporal hierarchy, different features possessing different temporal dynamics. In this paper, we introduce Dynamic Latent Hierarchy (DLH) -- a deep hierarchical latent model that represents videos as a hierarchy of latent states that evolve over separate and fluid timescales. Each latent state is a mixture distribution with two components, representing the immediate past and the predicted future, causing the model to learn transitions only between sufficiently dissimilar states, while clustering temporally persistent states closer together. Using this unique property, DLH naturally discovers the spatiotemporal structure of a dataset and learns disentangled representations across its hierarchy. We hypothesise that this simplifies the task of modeling temporal dynamics of a video, improves the learning of long-term dependencies, and reduces error accumulation. As evidence, we demonstrate that DLH outperforms state-of-the-art benchmarks in video prediction, is able to better represent stochasticity, as well as to dynamically adjust its hierarchical and temporal structure. Our paper shows, among other things, how progress in representation learning can translate into progress in prediction tasks.
translated by 谷歌翻译
Implicit regularization is an important way to interpret neural networks. Recent theory starts to explain implicit regularization with the model of deep matrix factorization (DMF) and analyze the trajectory of discrete gradient dynamics in the optimization process. These discrete gradient dynamics are relatively small but not infinitesimal, thus fitting well with the practical implementation of neural networks. Currently, discrete gradient dynamics analysis has been successfully applied to shallow networks but encounters the difficulty of complex computation for deep networks. In this work, we introduce another discrete gradient dynamics approach to explain implicit regularization, i.e. landscape analysis. It mainly focuses on gradient regions, such as saddle points and local minima. We theoretically establish the connection between saddle point escaping (SPE) stages and the matrix rank in DMF. We prove that, for a rank-R matrix reconstruction, DMF will converge to a second-order critical point after R stages of SPE. This conclusion is further experimentally verified on a low-rank matrix reconstruction problem. This work provides a new theory to analyze implicit regularization in deep learning.
translated by 谷歌翻译
Gradient-based explanation is the cornerstone of explainable deep networks, but it has been shown to be vulnerable to adversarial attacks. However, existing works measure the explanation robustness based on $\ell_p$-norm, which can be counter-intuitive to humans, who only pay attention to the top few salient features. We propose explanation ranking thickness as a more suitable explanation robustness metric. We then present a new practical adversarial attacking goal for manipulating explanation rankings. To mitigate the ranking-based attacks while maintaining computational feasibility, we derive surrogate bounds of the thickness that involve expensive sampling and integration. We use a multi-objective approach to analyze the convergence of a gradient-based attack to confirm that the explanation robustness can be measured by the thickness metric. We conduct experiments on various network architectures and diverse datasets to prove the superiority of the proposed methods, while the widely accepted Hessian-based curvature smoothing approaches are not as robust as our method.
translated by 谷歌翻译